
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

E-mail addre
Information Systems 33 (2008) 203–220

www.elsevier.com/locate/infosys
An empirical evaluation of XQuery processors

Stefan Manegold

CWI, Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands
Abstract

This paper presents an extensive and detailed experimental evaluation of XQuery processors. The study consists of

running five publicly available XQuery benchmarks—the Michigan benchmark (MBench), XBench, XMach-1, XMark

and X007—on six XQuery processors, three stand-alone (file-based) XQuery processors (Galax, Qizx/Open, Saxon-B) and

three XML/XQuery database systems (BerkeleyDB/XML, MonetDB/XQuery, X-Hive/DB). Next to assessing and

comparing the functionality, performance and scalability for the various systems, the major focus of this work is to report

in detail about the experiences made while performing such an exhaustive study, to discuss all the problems that we

encountered and how we solved them, and hence to hopefully provide some guidelines (or even a recipe) for performing

reproducible large-scale experimental research and system evaluation.

r 2007 Elsevier B.V. All rights reserved.

Keywords: XML; XQuery; XQuery processors; Database systems; Benchmarks; Performance evaluation
1. Introduction

Experimental evaluation and comparison of
(new) techniques, algorithms and/or complete sys-
tems is a vital means to assess the practical impact
and benefit of research results, especially in applied
domains such as data management systems. While
many publications present experimental results, the
extent of the presentation—or even the experiments
themselves—are often very limited due to space,
time and/or other resource constraints. The major
focus of most research publications is on the (so-
called) scientific contributions.

In this study, we shift the focus. Performing the
actual experimental evaluation becomes the primary
subject. Presenting the experimental setup in detail,
we do not hesitate to reveal all the ‘‘nasty details’’
e front matter r 2007 Elsevier B.V. All rights reserved

2007.05.004

ss: stefan.manegold@cwi.nl
and ‘‘minor problems’’ that give us headaches and
cause sleep-less nights. Although choosing XML
data management using XQuery as the sample
scenario for this study, we believe that the proposed
techniques can easily be adapted to other data
management scenarios. The major contribution is
hence a detailed cookbook about how to conduct an
experimental comparison and assessment of data
management systems. However, though focusing on
the actual experimentation techniques, we also
present the ‘‘hard facts’’: the detailed performance
results we gathered.

The remainder of this paper is organized as follows.
We start with presenting our experimentation envir-
onment in Section 2. Section 3 lists the benchmarks
that we are using and discusses adaptations of the
benchmarks, their queries and documents that are
necessary to perform our experiments. In Section 4,
we introduce the six XQuery systems we use, and
.

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2007.05.004
mailto:stefan.manegold@cwi.nl

ARTICLE IN PRESS

1In our experiments, we use the default: n ¼ 3.

S. Manegold / Information Systems 33 (2008) 203–220204
explain in detail how we compile, install, configure
and use them. Section 5 reveals how we run our
experiments, validate results and timings, and collect
the performance data that is presented in detail in
Section 6. We draw final conclusions in Section 7.

2. The scenario

Given the popularity of XML in the data manage-
ment world—both in research and in commercial
environments—we chose XML data management
using XQuery as the sample scenario for our experi-
mental study. In particular, the idea is to run the five
most popular publicly available XQuery benchmarks—
the Michigan benchmark (MBench), XBench, XMach-
1, XMark and X007—on the most popular publicly
available XQuery processors. We picked three stand-
alone (file-based) XQuery processors (Galax, Qizx/
Open, Saxon-B) and three XML/XQuery database
systems (BerkeleyDB/XML, MonetDB/XQuery,
X-Hive/DB). For simplicity, we will use engine as a
unified term to refer to both stand-alone (file-based)
XQuery processors and XML/ XQuery database
systems in the remainder of this text.

Despite using XML/XQuery as sample scenario,
none of the general approaches and techniques
presented and used in this work are limited to XML
and/or XQuery. With obvious and straightforward
adaptations, they can likewise be applied to other
data management scenarios.

The chosen setup is very complex. First of all,
there are 5� 6 combinations of benchmarks with
engines (actually 8� 6, as XBench comes in four
flavors, TC/SD, DC/SD, TC/MD, DC/MD). Sec-
ondly, each benchmark consists of 8 up to 46
individual queries (in total 163 queries for all five
benchmarks). Thirdly, each benchmark provides (at
least) 3–6 different document sizes. Hence, we face
two major challenges: (1) running a huge set of
experiments, and (2) collecting, analyzing, and
presenting a huge amount of experimental results.
To tackle these challenges, we decided to use the
XCheck benchmark platform [1].

2.1. Benchmark tool: XCheck

XCheck [1] provides a convenient integrated
platform to run various benchmarks (or experiments
in general), each consisting of several individual
queries and varying input documents, using different
engines. Per benchmark, all experiments are per-
formed by a single invocation of XCheck.
For each benchmark, XCheck iterates over all
engines, and for each engine over all document
sizes, executing each query of the respective bench-
mark on the given document size using the given
engine. Each individual experiment is repeated nþ 1
times. The execution times of the first run are
neglected (‘‘warm-up’’). XCheck then calculates the
average and standard deviation of the execution
times for the remaining n runs.1 Next to the overall
execution time, XCheck allows to collect the
breakdown times for document processing, query
translation, query execution, and result serializa-
tion—as far as provided by the various engines (see
Section 4.3.3 for details). Additionally, XCheck
collects the sizes of the produced results and (pre-
defined) error messages.

2.2. Customizing XCheck

XCheck can be extended to use new benchmarks
and/or new engines by providing the respective
information, e.g., the benchmark queries and
documents (or the respective generators), in XML
configuration files.

While being very convenient and working reliably,
XCheck (Version 0.1.3) comes with two limitations
that are quite relevant for our experiments.

The first limitation is that XCheck can only
handle a single document per query. XCheck
replaces the URI in the fn:doc() call in the
queries to use the requested document (size), and
only one URI is replaced. Hence, multi-document
experiments/benchmarks cannot easily be run with
XCheck. To circumvent this limitation while retain-
ing the multi-document characteristics, we gather
the URIs of all documents of each multi-document
benchmark (XMach-1, XBench TC/MD & DC/
MD) in a single XML file
and obtain the sequence of documents on-the-fly via
the following preamble to each query:

ARTICLE IN PRESS
S. Manegold / Information Systems 33 (2008) 203–220 205
The second limitation is the way how XCheck calls

the engines to run a query. This is done via a single
command line call. While this is sufficient for stand-
alone (file-based) XQuery processors, it does not
allow for a ‘‘natural’’ usage of XML/XQuery
database systems. Firstly, most (XML/XQuery)
database systems have a client–server architecture,
where the server is running in the background, and
each query is executed by calling of the client
program that then connects to the server. Secondly,
XML/XQuery database systems allow that the files
that contain the XML documents need to be read
only once, loading the documents into the database.
All queries then only need to access the documents as
stored in the database, not requiring the parsing of
the original document with each individual query.

While having access to the source code of XCheck
(it is basically a collection of perl scripts), we
decided not to change the code, but rather exploit
(mis-use?) some features of the adapters that specify
for each individual engine how XCheck should
execute a query. Next to the actual call to execute
the query, XCheck allows for both a pre-processing-
and a post-processing-call. All three interfaces are
basically simple command line calls of arbitrary
executables, parametrized with (the name/location
of) the query-file and the document-file. Hence, a
simple straightforward solution would be to start
the database server in the pre-call, run the query via
the client, and finally stop the server with the post-
call. However, we think it is not ‘‘natural’’ to start
and stop the database server for each individual
query execution—let alone the extra overhead/delay
that extends the overall execution time of the whole
benchmark considerably.

Alternatively, we could start all required engines
and load all used documents prior to starting the
XCheck runs. However, this would mean that we:
(1) require enough disk space to store all (possibly
huge) documents of each benchmark in all data-
bases concurrently, and (2) all database servers are
running concurrently—though only one is active at
a time, the ‘‘idle’’ ones consume vital memory,
which might compromise the behavior of the active
one.

Instead, we want to start each database server
individually only once per benchmark, engine and
document, and leave it running while all queries of
the given benchmark are executed on the given
document with the given engine. To implement this,
we added two empty queries to each benchmark,
containing only the comments ‘‘(:StartSer-
ver:)’’ and ‘‘(:StopServer:)’’. Used as first
and last query for each benchmark, these queries
trigger the pre- and post-calls to start and stop the
respective database server. For all other queries, the
pre- and post-calls do nothing.

Likewise, we added a query Q0 to all bench-
marks, that loads the respective document into the
database using the respective database’s document
loading functionality. Thus, XCheck automatically
uses these queries to measure and collect the
document loading times. All other benchmark
queries then access only the pre-loaded document,
just like a database scenario is supposed to work.
To save disk space, our post-calls remove the
document from the database once they see the
respective ‘‘(:StopServer:)’’-query.

3. The benchmarks

In this work, we consider the five most popular
publicly available XML/XQuery related benchmarks:
MBench [2], X007 [3], XBench [4], XMach-1 [5],
XMark [6], as listed in Table 1. All benchmarks
consist of a set of queries and provide document
generators that allow to generate documents of
various sizes.

3.1. Documents

Compiling, installing and running the document
generators was no problem with most of the
benchmarks. However, some generators required
small fixes. For X007 and MBench, the generators
required minor (quite obvious) changes to get the
source code compiled with gcc=gþþ 4.0.2 on
Fedora Core 4 (details omitted here). The XBench
document generator worked fine for the text-centric
documents (TC/SD, TC/MD), but kept crashing
with some ‘‘obscure’’ Java exception when trying to
generate the document-centric documents (DC/SD,
DC/MD) on our Fedora Core 4 (64-bit) systems
using Java 1.5.0. Luckily, Loredana Afanasiev
could provide us with the generated documents—
at least the smaller sizes.

3.2. Queries

Except from XMark, not all queries of the
benchmarks were publicly available in a form that
complies with the latest XQuery syntax require-
ments. In fact, 62 out of the total 163 benchmark
queries were not available as valid XQuery queries.

ARTICLE IN PRESS

T
a
b
le

1

B
en
ch
m
a
rk
s,
th
ei
r
d
o
cu
m
en
t
si
ze
s
a
n
d
n
u
m
b
er

o
f
q
u
er
ie
s

X
0
0
7
[3
]

(c
fg
)

X
M
a
rk

[6
]

(s
f)

M
B
e
n
c
h
[2
]

(s
f)

X
M
a
c
h
-1

[5
]

(#
d
o
c
s
)

X
B
e
n
c
h
[4
]

(s
iz
e
)

T
C
/S
D

T
C
/M

D

(#
d
o
c
s
)

D
C
/S
D

D
C
/M

D

(#
d
o
c
s
)

S
m
a
ll3

2
x
4
.5
M
B

0
.0
0
1

1
1
0
K
B

S
m
a
ll6

2
x
8
.7
M
B

0
.0
1

1
.1
M
B

1
0
0

2
.3
M
B

S
m
a
ll

1
1
M
B

2
6

9
.1
M
B

1
1
M
B

2
5
9
7

9
.9
M
B

S
m
a
ll9

2
x
1
3
M
B

0
.1

1
1
M
B

0
.1

4
6
M
B

1
0
0
0

1
8
M
B

N
o
rm

a
l

1
0
4
M
B

2
6
6

9
7
M
B

1
0
4
M
B

2
5
9
2
5

1
0
0
M
B

M
e
d
3

2
x
4
4
M
B

1
.0

1
1
0
M
B

1
.0

4
9
6
M
B

1
0
0
0
0

1
7
4
M
B

L
a
rg
e

1
.1
G
B

2
6
6
6

1
.1
G
B

1
.1
G
B

2
5
9
2
0
5
(?
)

(?
)

M
e
d
6

2
x
8
6
M
B

1
0
.0

1
.1
G
B

1
0
.0

4
.8
G
B

H
u
g
e

1
1
G
B

2
6
6
6
6

1
6
G
B

(?
)

2
5
9
2
0
0
5
(?
)

(?
)

M
e
d
9

2
x
1
2
9
M
B

1
0
0
.0

1
1
G
B

(D
o
c
u
m
e
n
t
g
e
n
e
ra
to
r
fa
ile
d
/c
ra
s
h
e
d
)

2
2

2
0

4
6

8
#
Q
u
e
ri
e
s

1
7

1
9

1
6

1
5

S. Manegold / Information Systems 33 (2008) 203–220206
Our thanks go to Loredana Afanasiev [7] for
making these queries compliant with the latest
XQuery requirements,2 so that they can be pro-
cessed by most of the considered XQuery proces-
sors. Some queries still give syntactical or runtime
errors with some of the engines, mainly due to
limitations of the respective engines (see Section 6.1
for details).
4. The systems

To be included in our evaluation, XQuery
processors need to fulfill three criteria:
(i)
2C

xche
free public availability, either in open source, or
at least as a binary (evaluation) version;
(ii)
 running under Linux on an x86_64 (AMD_64)
or x86 (Intel i686) platform; and
(iii)
 supporting (a reasonable subset of) XQuery.
While there might be more systems fulfilling these
criteria, we limit our evaluation to the following
ones:
f., hhttp://staff.

ck/queries.htmli.
scie
nce.uva.
nl/�lafan
Engine
 Version
 Code
 Bits
M
 MonetDB/XQuery
 [8]
 0.14.0
 C
 64

X
 X-Hive/DB
 [9]
 7.2.2
 Java
 64

B
 BerkeleyDB/XML
 [10]
 2.2.13
 C=Cþþ
 64
S
 Saxon-B
 [11]
 8.7.1
 Java
 64

G
 Galax
 [12]
 0.6.10
 OCaml
 64

Q
 Qizx/Open
 [13]
 1.0
 Java
 64
The first three are XML/XQuery database systems,
the last three are stand-alone (file-based) XQuery
processors.
4.1. Compilation

While all chosen XQuery engines are publicly
available, there is no unified way to install all of them.
Neither are all engines available as ready-to-run
packages suitable for our experimentation platform
(cf., Section 6.2), nor are all of them available in open
source. In the following, we briefly describe how we
installed each engine.
asi/

http://staff.science.uva.nl/~lafanasi/xcheck/queries.html
http://staff.science.uva.nl/~lafanasi/xcheck/queries.html
http://staff.science.uva.nl/~lafanasi/xcheck/queries.html

ARTICLE IN PRESS
S. Manegold / Information Systems 33 (2008) 203–220 207
X-Hive/DB, Saxon-B, Qizx/Open: For the three
Java-based engines, we use the pre-compiled .jar
packages, even if the source code is available as well.

The remaining three engines—MonetDB/XQu-
ery, BerkeleyDB/XML, Galax—are all available in
open source. Hence, we compiled them optimized
for our experimentation platform.

Galax: As recommended on the Galax web-site, we
used the GODI installation and configuration tool to
automatically compile and install a 64-bit version of
Galax from the sources. We used the default
optimization switches for the OCaml compiler, as
GODI does not allow to change them (easily).

MonetDB/XQuery: We use the 64-bit, 32-bit
OIDs binary RPMs as available from MonetDB’s
SourceForge site. These packages have been com-
piled with full optimization (‘configure – –en-
able-optimize‘).3

BerkeleyDB/XML: We compiled a 64-bit version
of the sources using gcc=gþþ 4.0.2 and the same
optimization switches3 as with MonetDB/XQuery.

(In fact, we planned to analyze the impact of
compiler optimization switches—mainly the differ-
ence between the default -g -O2 and the excessive
list used here—as well as the impact of using
different compilers, e.g., the Intel compiler, on the
various open source systems. However, time and
resource limitations forced us to postpone this
analysis. We plan to perform it and report the
results as soon as time and resources allow it.)
4.2. Configuration

The basic idea is to use the default ‘‘out-of-the-

box’’ configuration of the systems. We only applied
some minor configurations related to memory.
Given that we are using a 64-bit machine with
8GB of main memory (see Section 6.2 for details),
we allow the Java virtual machine for all Java-based
systems to allocate up to 6GB of main memory
(‘java -mx6144m‘). Using the complete 8GB is
not possible, as some system processes use some
memory (probably less than 2GB, but we did not
spend time on finding the maximum we could
safely assign to Java; 6GB seemed to work and
be sufficient for moderate document sizes), and
our machine is configured to not allow memory
3gcc -O6 -fexpensive-optimizations -fomit-

frame-pointer -finline-functions -falign-jumps ¼ 4

-frerun-cse-after-loop -falign-functions ¼ 4 -

frerun-loop-opt -falign-loops ¼ 4 -funroll-loops.
allocations that exceed the physical available
memory. The latter is an attempt to avoid instable
behavior of our machine under excessive virtual
memory allocations.

In particular, we did not explicitly create any
indices with the database systems, though especially
X-Hive and BerkeleyDB/XML might benefit sig-
nificantly from creating the right indices for the
right queries (cf., [8]). The main reason for this
decision was that we did not have enough in-depth
knowledge of all systems to tune all of them equally
well, and thus ensure a fair comparison. Hence,
treating all systems equally with ‘‘no tuning at all’’
seems the fairest approach for now. In fact,
investigating the impact/benefit of using indices
and further tuning would provide enough material
for a separate study of this kind.

4.3. Adapters

XCheck uses simple XML configuration files
(‘‘adapters’’) to specify the details how to call
each individual engine and how to collect the
detailed timing information (if available) from their
output.

Saxon-B, Galax, Qizx/Open: For the stand-alone
file-based processors, we use the default adapters
that come with XCheck 0.1.3. In the following, we
describe our new adapters for the three database
engines used here.

4.3.1. Starting servers and loading documents

To model a ‘‘realistic’’ database usage scenario,
we decided to start the database server and pre-load
the XML documents from the benchmarks’ docu-
ment XML files into the database only once
per benchmark and document, not repetitively for
each query. To implement this, we exploit the
concept of pre- and post-calls in the XCheck
adapters. The principle mechanism is sketched in
Section 2.2. We now discuss the details for each
database engine.

MonetDB/XQuery: Our pre-call script starts the
server in daemon mode via

Loading the document simply requires execution of
query count(doc(00odoc_uri400)[*]) (Q0),
exploiting the document caching feature of Mon-
etDB/XQuery: fn:doc() reads the document

ARTICLE IN PRESS
S. Manegold / Information Systems 33 (2008) 203–220208
from the given URI and stores it in the database.4

Subsequent fn:doc() calls with the same URI
avoid reloading the document, unless its timestamp
has changed. The respective post-call script stops
the server by killing it.

X-Hive/DB: We start and stop the server via

‘XHStartServer‘ and ‘XHStopServer‘,

respectively. To load the documents, the execution
script extracts the document URI from Q0 and calls
a small Java program (an adaptation of the sample
StoreDocuments.java that comes with X-Hive/
DB) that stores the document in the database and
assigns it the filename from the URI for later
reference.

BerkeleyDB/XML: Though also a database
system, BerkeleyDB/XML does not have a client/
server architecture, but simply works as a stand-
alone program that uses a persistent database
storage. Hence, our pre-call script only needs to
create a database, using the createContainer
command of the dbxml console application. To
load documents, we use the putDocument com-
mand of the dbxml console application. Like with
X-Hive/DB, we extract the URI from Q0 and assign
the filename from the URI for later reference.

4.3.2. Running queries

We use the following commands and respective
commandline options to execute XQuery queries
(given in a file) with the various engines:
4By default, when loaded implicitly via doc

ð00odoc_uri400), MonetDB/XQuery keeps only documents

up to 100MB persistent in the database; for our experiments, we

raise the limit to 20GB (– –set xquery_cacheMB ¼ 20000).
4.3.3. Measuring time

While XCheck measures the overall evaluation
time for each query execution itself, it can also
collect more detailed timing information from the
engines. The various engines provide different
means to get detailed timing information.

Saxon-B: The default adapter calls net.sf.-
saxon.Query from saxon8.jar with the -t
switch to get information about tree build time
(‘‘Tree built in’’), ‘‘Compilation time’’, and
‘‘Execution time’’. The former two are taken as
document processing time and query translation
time, respectively. Query execution time is calcu-
lated as difference of Execution time and
Compilation time. Result serialization time is
not available for Saxon-B.

Galax: The default adapter calls galax-run
with the -monitor-time on option to get the
detailed timing for document processing, query
translation, query execution and result serialization.
(See also Section 5.2.)

Qizx/Open: The default adapter calls qizxo-
pen_batch with the -tex switch to get informa-
tion about ‘‘evaluation time’’ and ‘‘display
time’’ which are used as query execution time and
result serialization time, respectively. Document
processing time and query translation time are not
available for Qizx/Open.

MonetDB/XQuery: We call MapiClient with -T
to get the detailed timings for document processing
(‘‘Shred’’), query translation (‘‘Trans’’), query
execution (‘‘Query’’), and results serialization
(‘‘Print’’). We also get the total execution time
(‘‘Timer’’), overruling XCheck’s measurements.

X-Hive/DB: We add timing statements to the
modified sample applications (StoreDocu-
ments.java & XQuery.java) that measure the
times taken by document loading, query translation
(rootLibrary.executeXQuery(theQu-
ery);), query execution (result.next();) and
result serialization (System.out.println
(value.toString());). Like with MonetDB/
XQuery, we also measure the overall evalua-
tion time, overruling the measurement done by
XCheck.

BerkeleyDB/XML: We call dbxml with -vv to
get the query translation time (‘‘Optimizer -
Finished parse, time taken’’) and query
execution time (‘‘Query-Finished query ex-
ecution, time taken’’). Additionally, we use
the time prefix with the putDocument and
print commands to get the document processing

ARTICLE IN PRESS

Table 2

Which systems provides which timing

S. Manegold / Information Systems 33 (2008) 203–220 209
time and result serialization time, respectively.
Alternatively, we also could use the time prefix
with the query command to get the sum of query
translation time and query execution time. How-
ever, in many cases, it turned out that none of these
timings can be trusted (see Section 5.2).

Table 2 summarizes, which engine provides which
timing information. For the database engines (Mon-
etDB/XQuery, X-Hive/DB, BerkeleyDB/XML), the
document processing time represents only the time
required to load, parse and process the original XML
document in order to store it in the database. Any
costs for accessing the document once it is stored in
the database are included in the query processing
times and/or communication times (cf., Section 5.2).
Please note that the classification of detailed timings
given here is based on the semantics we could easily
derive from the respective systems’ documentation
(as far as available). There is no guarantee that all
systems use the same semantics and/or definition for
these detailed timings.

5. The experiments

Finally, we are ready to run our experiments. To
ensure that the measured performance results do
indeed make sense, we need to make sure that all
engines work properly, with respect to both the
actual XQuery processing and the collection of
detailed timing information.

5.1. Checking/validating results

Given our extended (purely practical) experience
in software testing and validation,5 our first
concerns are not the actual performance results,
5Cf., ohttp://monetdb.cwi.nl/TestWeb/4.
but rather the question whether the various engines
indeed produce the correct results. Unfortunately,
the benchmarks do not come with correct results. In
fact, this is hardly feasible, given the randomness
built into most document generators for good
reasons. Moreover, even with correct results pro-
vided, validating the actual results requires more
than a simple diff, as both XQuery semantics and
XML specifications allow for some variation that
cannot easily be recognized as equivalent. For the
smallest document size of each benchmark, we did
‘‘by hand’’ verify ‘‘consistency’’ among the engines,
i.e., all engines yield the same result for each query.
For the remaining document sizes, we are left with
what XCheck offers us. First, XCheck detects
engine-specific error messages, using regular expres-
sions given in the adapters. Second, XCheck collects
the sizes of the produced query results. Though we
do not have the resources to analyze this in detail, a
quick comparison reveals that the all engines
produce results ‘‘of similar size’’ for all document
sizes and each query processed without errors.

5.2. Checking/validating timings

Already shortly after starting the experiments, we
noticed that there were some inconsistencies with
the detailed timings of some of the systems.
Basically, the breakdown timings (document pro-
cessing, query translation, query execution, result
serialization) did not always add up to the total
evaluation time. In most cases, the sum was less
than the total; we assume that this is due to start-up
and communication costs that are not included in
the detailed timings. Once the execution time (per
query) exceeds one minute (60 s), the detailed
timings reported by Galax are so small, that their
sum is only a minor fraction of the total execution
time. We guess that the respective code is not
correct, and hence, consider these timings as
unreliable. In our graph in the next section, we
hence depict these ‘‘missing times’’ as communica-
tion times.

More severe are the cases where the sum of the
detailed timings exceed the total times (often
significantly). This is mainly the case with Berke-
leyDB/XML, regardless which of the alternatives
we use to get the query execution times (cf., Section
4.3.3). Apparently, there is some bug in the code
that measures the respective times in BerkeleyDB/
XML. In the breakdown graphs in the next section,
we mark these ‘‘excess times’’ as (void). In the

http://monetdb.cwi.nl/TestWeb/

ARTICLE IN PRESS

T
a
b
le

3

E
rr
o
rs

a
n
d
er
ro
r
co
d
es

u
se
d
in

F
ig
s.
1
–
1
8

S. Manegold / Information Systems 33 (2008) 203–220210

ARTICLE IN PRESS

Fig. 1. XMach-1: execution time breakdown. Fig. 2. XMach-1: scalability.

S. Manegold / Information Systems 33 (2008) 203–220 211
scalability graphs, we use the total times as
measured by XCheck.

6. Experimental results

Figs. 1–186 present a subset of the performance
results that we collected from our exhaustive
experiments, running all benchmarks with various
document sizes, as depicted in Table 1. To avoid
‘‘endless’’ runs, we limit the execution time for each
single query to at most one hour (3600 s). Only for
loading documents (query Q0), we allow up to one

day (24 h).
The goal of this work is not to crown a single best

system nor to advise users which system to use for
their purpose. Rather, we want to provide detailed
information and insights such that in particular
developers can draw their own conclusions as to
whether, where and how to improve their systems.
Of course, also users are welcome to draw their own
conclusions from the detailed results we provide.

On the y-axis of all graphs, we list all queries of
the respective benchmark, identified by their num-
ber on the right-hand size of each graph. ‘‘load
6A full-color version of this paper is available on-line at

ohttp://www.cwi.nl/htbin/ins1/pub-

lications?request=abstract&key=Ma:IS:074.
doc.’’ identifies the document loading query Q0 as
introduced in Sections 2.2 and 4.3. For each query,
we list all six engines, identified by their first letter
on the left-hand side of each graph. For each
benchmark, we show two plots.

Execution time breakdown: For one sample
document size per benchmark, the graphs on the
left-hand side (‘‘odd’’ Figs. 1; 3; . . . ; 17)6 depict
the relative contribution of the detailed timings to
the total evaluation time per engine and query. The
different sections of the horizontal bars represent
the various detailed timings, provided they are
reported by the respective engine (cf., Section 4.3.3):
tran: q
uery translation,

exec: q
uery execution,

seri: r
esult serialization,

comm: c
ommunication (cf., Section 5.2),

docu: d
ocument processing,

(void): w
rongly reported times that exceed
t
he actual total times (cf., Section 5.2).
As mentioned in Section 4.3.3, the detailed
definition and semantics of these breakdown times
are not standardized and can vary between the
systems.

Scalability: The graphs on the right-hand side
(‘‘even’’ Figs. 2; 4; . . . ; 18)6 depict the total times

http://www.cwi.nl/htbin/ins1/publications?request=abstractkey=Ma:IS:08
http://www.cwi.nl/htbin/ins1/publications?request=abstractkey=Ma:IS:08
http://www.cwi.nl/htbin/ins1/publications?request=abstractkey=Ma:IS:08

ARTICLE IN PRESS

Fig. 4. XBench-DC/MD: scalability.

Fig. 3. XBench-DC/MD: execution time breakdown.

S. Manegold / Information Systems 33 (2008) 203–220212
(wall-clock) for all document sizes of each bench-
mark. The execution time per engine, query and
document is the length of the respective horizontal
bar taken from the left margin of the graph, i.e.,
bars for smaller documents cover the left part of the
bars of larger documents. To accommodate the
results for all document sizes of one benchmark in
one graph, we use a logarithmic scale (decimal base)
for the x-axis of the scalability graphs.

All reported results are collected using XCheck as
described in the previous sections. In particular, the
measured times represent the average of the last
three of four consecutive runs, i.e., ‘‘hot’’ results,
neglecting the first ‘‘warm-up’’ run (cf., Section 2.1).
6.1. Errors

Some queries fail to execute successfully. Table 3
lists all errors that occur with all our experiments.
We use the error codes (E01–E11, doc, DNF) from
Table 3 to indicate the errors in Figs. 1–18. In the
‘‘scalability’’ figures, the error codes are depicted in
the color of the smallest document size that the
respective error occurs with. In various cases, the
‘‘unknown error/crash’’ (E10) could actually be
caused by the fact that we kill the respective engine
(or client) due to a timeout, in which case they
should rather read DNF. However, we did not check
this by hand in all cases.

ARTICLE IN PRESS

Fig. 6. XBench-DC/SD: scalability.

Fig. 5. XBench-DC/SD: execution time breakdown.

S. Manegold / Information Systems 33 (2008) 203–220 213
For ease of comparison, we use the same error
codes as in [14], although errors E01, E03–E06 do
not occur any more. The respective problems with
MonetDB/XQuery 0.10.2 and Galax 0.5.0 (used in
[14]) have been fixed in the newer version used here
(MonetDB/XQuery 0.14.0 and Galax 0.6.10).

6.2. Hardware and operating system

Our experimentation platform is a dual 1.6GHz
AMD Opteron 242 (1MB L2 cache) processor with
8GB RAM and a RAID-5 disk subsystem (3ware
7810, configured with eight 250GB IDE disks of
7200RPM). The operating system is Fedora Core 4
(Linux 2.6.14 kernel), using a 64-bit address space.
We use gcc=gþþ 4:0:2 and Java 1.5.0 (64-bit).

7. Conclusions

First of all, we can conclude that our exercise
demonstrates the feasibility of such an extensive and
detailed experiment—though is requires quite some
work, time, and resources. We describe our experi-
mental setup in detail and explain, how we tackle

ARTICLE IN PRESS

Fig. 8. XBench-TC/SD: scalability.

Fig. 7. XBench-TC/SD: execution time breakdown.

S. Manegold / Information Systems 33 (2008) 203–220214
various problems to reach our ambitious goal. We
hope, we provide all information that is necessary
and sufficient to reproduce our results.

As expected, the actual performance results do
not crown a single winner. However, some general
trends can be observed. In a realistic database
scenario, i.e., with the documents pre-loaded in the
database, the database engines perform consider-
ably better (up to two orders of magnitude) than the
file-based stand-alone systems. Even if we add the
initial document loading times, they are often still
faster, but hardly ever slower. In pure document
loading performance (query Q0), MonetDB/XQu-
ery, Saxon-B and Qizx/Open lead the race neck-to-
neck; X-Hive/DB and BerkeleyDB/XML follow
within a factor 2–3; Galax runs about factor 10
behind the leaders. While all systems have their
strengths and weaknesses, MonetDB/XQuery seems
to be ahead of the pack in most cases, usually
followed (in that order) by BerkeleyDB/XML,

ARTICLE IN PRESS

Fig. 10. XBench-TC/MD: scalability.

Fig. 9. XBench-TC/MD: execution time breakdown.

S. Manegold / Information Systems 33 (2008) 203–220 215
X-Hive/DB, Qizx/Open, Saxon-B, and finally Ga-
lax. Join recognition and processing (still) seems to
be the biggest challenge to be solved.

Compared to [14], we upgraded two systems to
newer versions. For MonetDB/XQuery, version
0.10.2 has been replaced by version 0.14.0, and for
Galax, version 0.5.0 (pre-compiled 32-bit binary) has
been replaced by version 0.6.10, which we compiled
from the source into a 64-bit binary (cf., Section 4.1).
For single-document benchmarks, the performance
of MonetDB/XQuery 0.14.0 is within 20% of the
performance of MonetDB/XQuery 0.10.2. With
multi-document benchmarks, however, MonetDB/
XQuery 0.14.0 shows an improvement of up to three

ARTICLE IN PRESS

Fig. 12. XMark: scalability.
Fig. 11. XMark: execution time breakdown.

S. Manegold / Information Systems 33 (2008) 203–220216
orders of magnitude. The new (64-bit) version of
Galax runs much more stable and with much less
memory problems than the old (32-bit) one. In
particular, it is now able to successfully run the
XMark join queries (Q8,9,11,12) on documents of
up to 110MB (sf ¼ 1). However, overall scalability
has hardly improved, and overall performance has
dropped by a factor 2–5.

For the future, we plan to extend the scenario in
various dimensions, e.g., including more systems

ARTICLE IN PRESS

Fig. 14. XOO7: scalability.

Fig. 13. X007: execution time breakdown.

S. Manegold / Information Systems 33 (2008) 203–220 217

ARTICLE IN PRESS

Fig. 16. MBench: scalability (1/2).Fig. 15. MBench: execution time breakdown (1/2).

S. Manegold / Information Systems 33 (2008) 203–220218

ARTICLE IN PRESS

Fig. 18. MBench: scalability (2/2).

Fig. 17. MBench: execution time breakdown (2/2).

S. Manegold / Information Systems 33 (2008) 203–220 219

ARTICLE IN PRESS
S. Manegold / Information Systems 33 (2008) 203–220220
(e.g., eXist [15]) and benchmarks (e.g., XPathMark
[16], MemBeR [17]), considering other compilers
and optimization flags, using different hardware
and operating systems, etc. The goal is not to find
the single best setup, but rather to show that all
these often neglected factors can influence experi-
mental results considerably. Hence, all reports of
experimental results should reveal all these informa-
tion explicitly in order to: (1) provide all informa-
tion to make the results reproducible, and (2) to put
them in the right perspective. Finally, we hope that
our experiences with XCheck will help to improve
and extend this convenient experimentation tool.
References

[1] L. Afanasiev, M. Franceschet, M. Marx, E. Zimuel, XCheck:

a platform for benchmarking XQuery engines, in: VLDB,

2006, demo. hhttp://ilps.science.uva.nl/Resources/XCheck/i.

[2] K. Runapongsa, J. Patel, H. Jagadish, Y. Chen, S. Al-

Khalifa, The Michigan benchmark: a microbenchmark for

XML query processing systems, in: EEXTT, 2002, hhttp://

www.eecs.umich.edu/db/mbench/i.

[3] S. Bressan, G. Dobbie, Z. Lacroix, M. Lee, Y. Li, U.

Nambiar, B. Wadhwa, X007: applying 007 benchmark to

XML query processing tool, in: CIKM, 2001, hhttp://

www.comp.nus.edu.sg/�ebh/XOO7.htmli.
[4] B. Yao, T. Özsu, N. Khandelwal, XBench benchmark and

performance testing of XML DBMSs, in: ICDE, 2004,

hhttp://se.uwaterloo.ca/�ddbms/projects/xbench/i.

[5] T. Böhme, E. Rahm, XMach-1: a benchmark for XML data

management, in: BTW, 2001, hhttp://dbs.uni-leipzig.de/de/

projekte/XML/XmlBenchmarking.htmli.

[6] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu,

R. Busse, XMark: a benchmark for XML data management,

in: VLDB, 2002, hhttp://xml-benchmark.org/i.

[7] L. Afanasiev, M. Marx, An analysis of the current XQuery

benchmarks, in: ExpDB, 2006.

[8] P.A. Boncz, T. Grust, M. van Keulen, S. Manegold, J.

Rittinger, J. Teubner, MonetDB/XQuery: a fast XQuery

processor powered by a relational engine, in: SIGMOD,

2006, hhttp://monetdb-xquery.org/i.

[9] X-Hive/DB, hhttp://www.x-hive.com/products/db/i.

[10] Berkeley DB, XML, hhttp://www.sleepycat.com/products/

bdbxml.htmli.

[11] Saxon-B, hhttp://saxon.sourceforge.net/i.

[12] M. Fernández, J. Siméon, B. Choi, A. Marian, G. Sur,

Implementing XQuery 1.0: the Galax experience, in: VLDB,

2003, hhttp://www.galaxquery.org/i.

[13] Qizx/Open, hhttp://www.axyana.com/qizxopen/i.

[14] S. Manegold, An empirical evaluation of XQuery processors,

in: ExpDB, 2006, hhttp://www.cwi.nl/htbin/ins1/publications?

request=abstract&key=Ma:EXPDB:06i.

[15] eXist, hhttp://exist.sourceforge.net/i.

[16] M. Franceschet, XPathMark: an XPath benchmark for

XMark generated data, in: XSym, 2005.

[17] L. Afanasiev, I. Manolescu, P. Michiels, MemBeR: a micro-

benchmark repository for XQuery, XSym, 2005.

http://ilps.science.uva.nl/Resources/XCheck/
http://www.eecs.umich.edu/db/mbench/
http://www.eecs.umich.edu/db/mbench/
http://www.comp.nus.edu.sg/~ebh/XOO7.html
http://www.comp.nus.edu.sg/~ebh/XOO7.html
http://www.comp.nus.edu.sg/~ebh/XOO7.html
http://se.uwaterloo.ca/~ddbms/projects/xbench/
http://se.uwaterloo.ca/~ddbms/projects/xbench/
http://dbs.uni-leipzig.de/de/projekte/XML/XmlBenchmarking.html
http://dbs.uni-leipzig.de/de/projekte/XML/XmlBenchmarking.html
http://xml-benchmark.org/
http://monetdb-xquery.org/
http://www.x-hive.com/products/db/
http://www.sleepycat.com/products/bdbxml.html
http://www.sleepycat.com/products/bdbxml.html
http://saxon.sourceforge.net/
http://www.galaxquery.org/
http://www.axyana.com/qizxopen/
http://www.cwi.nl/htbin/ins1/publicationsrequestabstractkeyMa:EXPDB:06
http://www.cwi.nl/htbin/ins1/publicationsrequestabstractkeyMa:EXPDB:06
http://www.cwi.nl/htbin/ins1/publicationsrequestabstractkeyMa:EXPDB:06
http://exist.sourceforge.net/

	An empirical evaluation of XQuery processors
	Introduction
	The scenario
	Benchmark tool: XCheck
	Customizing XCheck

	The benchmarks
	Documents
	Queries

	The systems
	Compilation
	Configuration
	Adapters
	Starting servers and loading documents
	Running queries
	Measuring time

	The experiments
	Checking/validating results
	Checking/validating timings

	Experimental results
	Errors
	Hardware and operating system

	Conclusions
	References

